
Active learning from demonstrations

Roman Castagné
Master MVA

Ecole des Ponts Paristech
roman.castagne@gmail.com

Louis Bouvier
Master MVA

Ecole des Ponts Paristech
louis.bouvier@eleves.enpc.fr

Abstract

In Reinforcement Learning (RL), an agent shapes a policy to manage a task
based on its interaction with its environment. Learning may be slow, starting
with a transition phase of experiencing bad rewards, which can be prohibitive
for many real-world applications. Active Learning from demonstrations aims at
tackling this issue, taking advantage of the knowledge of some experts during
training. But querying might be expensive and demonstrations sub-optimal. In
this context, we design an algorithm that combines a model with several heads to
query demonstrations smartly and learn from RL signals, and a smaller model that
focuses on the potentially sub-optimal expert to inform the former using reward
shaping during an initial phase. We consider applications in both a tabular setting
and a continuous state space.

1 Introduction

Learning from demonstrations has been an active field in Reinforcement Learning (RL), Machine
Learning and Robotics over the past few years. Indeed, it has been shown that not only demonstrations
can speed-up learning, but also enable the agent to exceed the performance of the (human or agent)
demonstration provider, as it was the case with the famous AlphaGo algorithm [13] in 2016. Being
able to leverage demonstrations can be crucial in real-world applications, for instance robotics [3],
where the action and state spaces are usually continuous and where RL signals (current reward and
transition) may be inaccessible. We emphasize existing approaches to this setting in section 2.1.
Having the opportunity to get RL signals from the environment paves the way for the combination of
information drawn from the demonstrations and from the interactions of the agent with its environment
in the learning process (section 2.2). The active learning from demonstrations framework we consider
corresponds to this dual information too, but it supposes a decision by the agent regarding the
demonstrations. Given a certain criterion on the current learning state and a demonstration budget,
the agent decides whether to query a new demonstration or not. In section 2.3, we highlight some
recent paths in this direction. The main questions we address are:

• How can we define the agent’s criterion to ask for new demonstrations online ?

• What can be the form of the demonstrations and how can we benefit from them ?

We base our approach on the recent work of Wang et al. 2019 [16] and Chen et al. 2018 [5] using
uncertainty as a metric to request demonstrations. For our experiments, we consider both the tabular-
setting of Cliffwalk and the continuous state space of Cartpole. In section 3, we set the theoretical
background and define our algorithm. Section 4 highlights the experimental setting. We criticise our
results and compare our approach to baselines in section 5.

2 Existing approaches to learn from demonstrations

2.1 Learning merely from demonstrations

When a direct access to rewards and transitions is unavailable, a wide spectrum of approaches have
cropped-up to take demonstrations into account. Some of them used imitation learning techniques
to try to get the policy behind the observed demonstrations, as addressed for the driving task [18]
without considering the RL Markov Decision Process (MDP). Others used Inverse Reinforcement
Learning to model the demonstration provider’s reward function (actually a candidate reward function
satisfying some additional criteria since this problem is ill-posed as is) and then extract a policy from
this latter, or directly used generative adversarial imitation learning [8]. Another example of learning
merely from demonstrations is DAGGER [12], where an aggregated data-set was built with a constant
assistance of the demonstration provider.

2.2 Combining demonstrations and RL signals

In a different context, some ideas have been emphasized to incorporate the demonstrations’
information into the MDP and to combine it with RL signals through policy shaping [2], reward
shaping [1], or including a policy improvement bias towards demonstration [4]. Similar ideas added
an imitation loss [7] or constraints for the optimization problem of Approximate Policy Iteration [9]
in order to bias the learning towards demonstrations. Given the fact that the latter might be sub-
optimal, few or insufficient to properly model a policy, some research paths have been considered to
incorporate them into the exploration process with confidence analysis like the CHAT algorithm [15].

2.3 Actively querying demonstrations

More specifically, the field of active learning from demonstrations in RL has been explored,
motivated by the following assessments: querying demonstrations may be expensive, and focusing
on critical states can foster learning efficiency. As we mentioned above, the criterion to query
demonstrations is crucial. An idea that seems natural and significantly studied in literature is to
use demonstration budget in states or regions where the uncertainty (over the current policy, the
current Q-function or the demonstration provider’s modeled policy for instance) is high. In this
context, Bootstrapped DQN and Noisy Networks were suggested to estimate recent states’ uncertainty
during learning and query demonstrations in states where uncertainty is high [5]. In a similar way,
DROP [16] is a framework to build confidence metrics online and to query demonstrations in regions
where confidence is low. Some other uncertainty measures have been studied. [14] used leverage and
discrepancy in the linear regression framework to account for states that have been poorly explored
and for those leading to high model errors respectively.

3 Theoretical setting

3.1 General context

We consider the standard Reinforcement Learning setting with an agent interacting with an
environment, which can be modeled by a Markov Decision ProcessM = (S,A, r, p), respectively
the state space, the action space, the possibly stochastic reward r : S ×A → [rmin, rmax] and the
transition probability p : S × S ×A → [0, 1] such that p(.|s, a) is a transition probability over the
state space given any state-action pair (s, a) ∈ S ×A. Throughout this report we present our results
in an infinite horizon setting, involving a discounting factor γ. We consider both a tabular case where
S and A are discrete, and a setting where S is continuous and A is discrete. Our aim is to find a
policy denoted by π∗ : S ×A → R which can be seen as a density over the action space A given a
state s ∈ S, π∗(.|s), that maximizes the expected discounted cumulative reward:

π∗ ∈ argmaxπ
∑
t

γtEst,at∼π(.|st)
[
rt
]

(1)

In addition to this standard RL setting, we have at our disposal a limited budget B ∈ N of
demonstrations that we restrict to state-action pairs (that lead to natural transitions): (sdi , a

d
i)1≤i≤B .

This set is not fixed at the beginning of the learning process, only B is. We highlight the fact that

2

given the small value of B, allocating those demonstrations online in a way that tends to optimize the
learning benefit drawn from their observation is crucial. Besides, we do not assume they reflect an
optimal behaviour.

In this context, adding an imitation margin or loss to bias our policy towards demonstrations during
the whole training as in [7] for instance does not seem to be appropriate because of their potential
sub-optimality, of their online acquisition, and because the resulting optimization task may have
divergent losses [6]. Instead, we choose to integrate demonstrations during the learning process
following two ideas: merely totting them up in the replay buffer our model is trained on (or observing
them in the tabular case), and temporally shaping the reward based on a model of the demonstration
policy. We choose to jump on the bandwagon of Active Learning from Demonstrations based on
uncertainty estimations. Indeed, as we mentioned above, the crux of the matter is to choose when
to query demonstrations and to add them in the transitions data set so as to draw as much benefit as
possible from the budget.

Most of the learning methods we consider are based on Q-learning, an off-policy algorithm that
has shown great success in RL, especially combined with Deep Learning architectures [10].

3.2 Jensen-Shannon divergence and uncertainty estimation on the learning agent

We base our algorithm on Bootstrapped DQN [11], adapted for active learning [5]. The main idea
of Bootstrapped DQN is to train K ∈ N different networks or a single network with K different
heads to model the Q-function, with K distinct target networks, and pick one of them at each learning
episode to follow a greedy exploration. Stochastic gradient descent is used to update the weights of
the current network on a batch drawn from the replay buffer, and possibly the weights of the other
ones (depending on a Bernoulli realization for instance). The random initialization of the weights,
the stochasticity of the gradient descent and the fact that we have different target networks foster a
certain diversity among the networks, despite the fact that they are partially or totally trained on the
same samples, as discussed in the appendix of [11]. Chen et al. [5] emphasized an idea to estimate
the uncertainty of the learning agent in a given state s ∈ S with the Jensen-Shannon divergence of the
policies (πk(.|s))1≤k≤K induced by the different networks (Qk)1≤k≤K of the Bootstrapped DQN as
follows:

πk(a|s; θ) =
eQk(s,a;θ)∑

a′∈A
eQk(s,a′;θ)

, ∀a ∈ A (2)

JS((πk)1≤k≤K ; s) = H(
1

K

K∑
k=1

πk(.|s))− 1

K

K∑
k=1

H(πk(.|s)) (3)

Where θ denotes the current weights of the network (or set of networks) and whereH(p) for a discrete
density p : X → R is the entropy of p defined asH(p) = −

∑
x∈X p(x)log(p(x)).

In the case of tabular setting, we do not consider the θ parameters but the current tabular values of
the Q-functions. The different policies πk for k ∈ [K] can be derived with the same equation 2 and
we can compute in a similar way the Jensen-Shannon divergence with equation 3. The main difference
is that since in the tabular Q-Learning algorithm updates are deterministic given a transition, we must
enforce diversity with a randomized update.

3.3 Active queries based on uncertainty

Once we have defined a way to estimate uncertainty at a given state with equation 3, we can derive a
simple way to decide whether or not the agent asks for a new demonstration. We follow the principle
of [5] keeping track of the last values of the Jensen-Shannon divergence computed with a queue of
length Lq , and we decide to query a demonstration when the current value of the divergence is greater
than a certain percentile pr of the queue. This process is backed by the following idea: because the K
heads or networks emphasize a diversity of policies given the same environment and learning process,

3

asking demonstrations in states that lead to high divergence may enable us to focus on crucial ones
(intrinsically hard to model).

3.4 Building a model of the demonstration policy

The main hindrance of an algorithm whereby demonstrated transitions are added to the replay-
buffer is that they are merely observed in the same way as transitions during the exploration. Though
it seems an efficient way to foster robustness against imperfect or noisy demonstrations, their scarcity
may require to give them a predominant position. Therefore, we proceed to another supervised
learning task: building a model of the policy behind the demonstrations, given the current data set of
demonstrations (states and corresponding chosen actions). To do so, we consider a Gaussian kernel
model.

The choice of a kernel method is underpinned by the scarcity of the demonstrations. We can
proceed to a Kernel Ridge Regression or to a Kernel Logistic Regression (or Kernel SVM) depending
on the dimension of the action space.

3.5 Active queries and reward shaping: our approach

As stated above, we decide not to bias our learning agent towards demonstrations with an explicit
loss or margin during the whole learning process for reasons mentioned section 3.1. Nonetheless,
we think, regarding past results and critics of DQN [5, 6], that demonstrations only added to the
replay-buffer would form a “too low signal” to speed up learning. We thus propose a way to find
a trade-off between the two approaches: based on the current model of the demonstration policy
defined in section 3.4, we proceed to use reward shaping [1] in addition to the observation of the
demonstration transition. We temporarily use an updated reward r̂t:

r̂t = rt + λ
[
1− (p(a|st, demo model)− π(a|st))2

]
(4)

Intuitively, we will initially prefer actions in accordance with observed and modeled demonstrations.
We do not start shaping the reward from the beginning of learning, but at the point when sufficient
demonstrations are available to foster a reasonable generalization of their observation.

It has been proven that shaping with potential functions over the state-action pairs Φ : S ×A → R
does not change the total order over policies if Φ is stationary [17]. However, active learning from
demonstrations induces by definition an online query and update of the information drawn from the
demonstrations. Encapsulating part of this latter in a reward can not lead to a stationary potential
function. We are aware of this limit and thus stop shaping the reward after a fixed time (for instance
twice the time step when the last demonstration was requested).

Given the way we request demonstrations, we hope the shaped reward will give informative
indications to the learning agent. Reward shaping seems adapted to settings where the reward
function r is poorly informative (sparse for instance, like in Cartpole). Besides, choosing to stop
shaping at a given learning step prevents us from being highly limited by a sub-optimal source of
demonstrations. We present our approach in Algorithm 1.

4 CliffWalk and CartPole settings

We consider two environments to evaluate the ideas of section 3. As a matter of principle, we start
with a simple tabular setting with Cliffwalk, and extend our study to a continuous state space with
Cartpole.

CliffWalk is a 2D game in which an agent has to go from a starting point to a finish point while
maximising its reward. It can move vertically or horizontally on a 2D grid that consists in plates
(reward −0.1), pits (reward −5), the starting point and the finishing point (reward 5). When the agent
reaches the finishing point, the game stops. This corresponds to a tabular setting: the state of the agent
is a single integer corresponding to the id of the tile it is on. An example of this environment can be

4

Algorithm 1: Active learning and reward shaping: one episode
input :(Qk)1≤k≤K , K Q-functions parameterized by different weights and having different

target networks, initial state s, budget B, current ExpertModel, current divergence
queue U_queue, current demonstration data set Ddem and replay buffer Dbuff

output :Updated input
1 Sample: arm ∼ U([K])
2 while episode has not ended do
3 if B > 0 then // we have a fixed budget
4 U ← Jensen-Shannon ((πk)1≤k≤K ; s);
5 Uthreshold ← Percentile (U_queue) ;
6 U_queue.push(U);
7 if U > Uthreshold then // current divergence high
8 B ← max(B − 1, 0);
9 action← Expert query;

10 Ddem ← Ddem ∪ {(s,action)};
11 else
12 action← argmaxa∈Aπarm(a|s);
13 end
14 else
15 action← argmaxa∈Aπarm(a|s);
16 end
17 take action, observe s′, r from environment;
18 Possibly shape: r ← shape(ExpertModel, s,action, s′, r);
19 Dbuff ← Dbuff ∪ {(s,action, s′, r)};
20 update (Qk)1≤k≤K with a batch from Dbuff and possibly update target networks;
21 Possibly update ExpertModel from Ddem;
22 s← s′;
23 end

seen in figure 1. Transitions are stochastic and rewards deterministic here. We emphasize that several
strategies lead to the goal state but some of them are sub-optimal in terms of expected accumulated
discounted reward. More precisely, we consider a 15× 15 grid, a discounting factor γ = 0.99 and
a stochastic transition with a probability of success psuccess = 0.9 (the agent effectively moves
according to the chosen action a with probability psuccess and follows a random transition among the
4 possible ones otherwise).

Figure 1: Screenshot of the CliffWalk environment. Each X is a pit. The agent starts from the tile S
and has to reach the tile G to end the episode.

CartPole is a classic control problem in which an agent has to balance vertically a pole that can
rotate without friction around a cart that moves only horizontally. The episode ends when the pole
falls with too much angle on one side or the other, when the cart reaches the end of the screen, or
when the episode reaches a time limit of 1000 steps. The state the environment returns is a vector of
size 4, with elements corresponding to the cart position, its velocity, the pole angle as well as the

5

velocity of the tip of the pole. An example of the environment taken at a specific step is shown in
figure 2. CartPole environment is implemented through OpenAI gym’s library1.

Figure 2: Screenshot of the CartPole environment. The agent controls the cart horizontally on the
line.

We argue that those two environments, corresponding to two very different settings (tabular and
continuous case), enable us to evaluate our algorithms in two important frameworks of reinforcement
learning.

5 Results and Discussion

In this section, we present the experimental results of our algorithms. We also expose our training
details and hyper-parameters in order to foster reproducibility of our results and criticise them.

5.1 Exploiting expert demonstrations

5.1.1 CliffWalk

To provide demonstrations, we train two agents, one with Q-Learning algorithm and one with
SARSA, both of them using softmax exploration (see the top of figure 3). We see that the “path”
found by SARSA to reach the goal has a lower cumulative reward than the one found by Q-Learning.
We can then use the policies given by different stages of the two algorithms to provide demonstrations
with several levels of expected cumulative reward.

In this setting, we compare several algorithms: Q-Learning and SARSA learning only based on
RL signals, Q-Learning and SARSA learning with all budget B = 100 transitions observed at the
beginning and a tabular version of Bootstrapped DQN [5], as depicted in sections 3.2 and 3.3 (without
reward shaping at this stage).

At the bottom of figure 3, we see that merely observing demonstrated transitions at the beginning
speeds up learning both for SARSA and Q-Learning. Bootstrapped Q-Learning tends to be faster
than the latter. Nonetheless, varying the parameters of this algorithm, we understand the gain in
learning speed is due to the greedy policy the exploration is following rather than to the uncertainty
estimation. Indeed, changing the number of models K does not affect the results empirically (neither
does the percentile, the queue length or even the quality of the demonstrations on average). Changing
the environment, to make it more complex (with a larger grid or a smaller psuccess) leads to very
similar results. Demonstrations restricted to transitions in a tabular case where no smoothness or
regularity is observable over the state space seem indeed very difficult to leverage, all the more so as
they are scarce and thus only observed for a limited portion of the state space. Given this assessment
of the combination of a poor structure in the state representation and a small budget B of local
information, the tabular case turned out to be a difficult setting in the context of active learning from
limited demonstrations. We focus on the second application to test the approach defined in Algorithm
1.

1https://gym.openai.com/envs/CartPole-v0/

6

https://gym.openai.com/envs/CartPole-v0/

Figure 3: Cumulative reward over learning episodes. At the top: Q-Learning and SARSA, learning
merely from the RL signals (with a softmax exploration). At the bottom: Q-Learning and SARSA,
learning merely from the RL signals, Q-Learning and SARSA, with all budget B = 100 used at the
beginning and Bootstrapped Q-Learning with active queries

5.1.2 Cartpole

We expose in figure 4 the results on the Cartpole environment for a Deep Q Network with all
its budget used at the beginning, the Bootstrapped Deep Q Network presented in section 3.2 which
uses uncertainty to query the demonstration provider, the same model with an additional learner that
models the demonstration using Kernel Ridge Regression as presented in section 3.4, and a similar
model using Kernel SVM (both of the latter to shape the reward at the beginning of learning). All
models have access to the same budget when training.

We trained our algorithms 50 times and present their expected reward. We observe an important
variance, which prevents us from being able to precisely interpret the results. However, we clearly
see an improvement of using Bootstrapped DQN over the original DQN model witnessing all demon-
strations at the beginning. Indeed, the original DQN model fails at exploiting the demonstrations:
after a small surge in total reward at the beginning due to the replay buffer being filled mostly by

7

demonstrations, its performance drops for about 100 episodes until it finally starts learning. Giving
this model its budget at the beginning delays the learning rather than helps it. When using improved
query mechanics, the model starts increasing its reward sooner, around 50 iterations.

The system modeling demonstrations can quickly learn a good policy with only a few training
samples. Over 50 runs and seeing 100 demonstrated transitions from an agent that performs a 1000
score on average, it obtains a median score of 180 when evaluated as a policy on its own. Our aim
when using a kind of reward shaping as described in section 3.5 is to exploit this signal even when
the demonstration signal is not available (in states where no demonstration has been observed or for a
fixed period after the budget is exhausted). As can be seen in figure 4, both models of demonstration
(with Support Vector Machines and Kernel Ridge Regression) succeed at helping the policy network
to get to good levels of reward faster. For instance, using Kernel Ridge Regression, our model reaches
an expected reward of 100 after about 70 iterations, while Bootstrapped DQN reaches it at about 110
iterations, and even later for DQN. Empirically, using Kernel Ridge Regression seems to yield even
better results than SVM, although the high variance makes interpretation hard.

In order to balance the reward given by the model of demonstrations with the reward from the
environment, we use a weight parameter. If it is too low, then the reward corresponds only to the one
from the environment, leading to a model similar to Bootstrapped DQN. On the contrary, if it is too
high, the main policy modeled depends too much on a possibly biased or poorly trained model. This
parameter could also be seen as a way to cope with sub-optimal demonstrations, if the level of the
expert is known in advance. We performed grid search to find the optimal value of this weight, 0.75.
All the results were obtained with this value.

Finally, to ensure that the gain in performances from Bootstrapped DQN is not only due to its
greedy nature as seems to be the case in the tabular setting, we plot the performance of a Bootstrapped
DQN with a single head. This model uses a greedy strategy instead of ε-greedy for the simple DQN.
As can be seen in figure 6 (in the appendix), the model fails to learn from the environment, thus
demonstrating the usefulness of using uncertainty in querying demonstrations.

0 20 40 60 80 100 120 140
Episodes

101

102

Re
wa

rd

Deep Q Network with all budget at start
B-DQN
B-DQN with Kernel Ridge Regression
B-DQN with SVM

Figure 4: Expected reward when training agents with Deep Q Network (DQN), Bootstrapped DQN
(B-DQN), Bootstrapped DQN with a Kernel Ridge regressor or a SVM modelling demonstrations.
The lines here correspond to the mean over 50 runs, and the shaded part to the variance. We plot in
the log domain for better visualisation.

8

5.2 Behaviour with sub-optimal demonstrations

In order to mimic sub-optimal demonstrations, we train several agents until they reach a fixed
expected reward. We choose these rewards to be 50, 100, 200, 500 and 1000. We then use these
agents (trained policy networks) to provide demonstrations when requested by the agent currently
being trained. The learning curve of the model depending on the level of sub-optimality of the
demonstration provider can be seen in figure 5.

Due to the high variance, it is hard to interpret this graph precisely. However, we can still notice
that our model is relatively robust to sub-optimal demonstration. Indeed, models provided with
demonstrations from an expert scoring 200 or above behave in a similar fashion. However, it seems
that taking a demonstration model that has poor performance (getting score below 100) hurts the
learning speed. It is worth noting that the experts were saved when reaching the desired level of
rewards, but did not necessarily sustain the same rewards throughout all their training.

0 20 40 60 80 100 120 140
Episode

100

200

300

400

500

600

Re
wa

rd

Demo level : 50
Demo level : 100
Demo level : 200
Demo level : 500
Demo level : 1000

Figure 5: Expected reward when training agents with different levels of sub-optimality. The lines
here correspond to the mean over 10 runs, and the shaded part to the variance. We plot in the log
domain for better visualisation.

5.3 Training details

For CartPole, we use Adam to optimize our model, with a learning rate of 0.001. We set the size
of the replay buffer to 10, 000 transitions, and a batch size of 64. We explore the state space using an
ε-greedy strategy, with ε decaying exponentially from 1 to 0.05.

We update the target network every 50 iterations. For Bootstrapped DQN, we found that using 2
heads gave the best performance. The Kernel Ridge Regression has parameters α = 0.1 and γ = 0.1,
and the SVM has parameter C = 10. Both models are available in the Scikit-Learn library2.

5.4 Discussion

Two main factors can explain why it is hard to exploit demonstrations in the tabular setting.
First, the environment is simple enough to be solved without help from an external entity. Indeed,
simply taking a greedy strategy yields very good results. This means that even with minimal or no
exploration, an agent can quickly get decent rewards in CliffWalk, thus eliminating the need for a
demonstration provider. Secondly, this environment does not possess any global regularity, linking

2https://scikit-learn.org/stable/

9

https://scikit-learn.org/stable/

states together. For instance, having two states next to each other does not mean that the optimal
action in each state is the same, and does not tell anything about similarities in the rewards. For these
reasons, we switched to an environment with a lot more regularity in the state and reward spaces that
allows generalising demonstrations to a wider spectrum of states.

In the Cartpole environment, demonstrations given at a specific state might be useful in a different
state. For instance, a demonstration given for a specific angle of rotation and speed is useful inde-
pendently of the position of the cart on the horizontal axis. However, simply giving demonstrations
at the beginning, as was demonstrated with DQN, is not informative enough. Indeed, as explained
in [6], witnessing a demonstration informs about a good action, but not about traps and low reward
decisions. Thus, after having seen a batch of good actions, the agent still has to explore other states
to learn a better Q-function. This explains why even with demonstrated actions, DQN takes more
than 100 episodes before learning a better policy.

Bootstrapped DQN enables to identify states where the divergence between all heads is high,
similar to an ensemble of models. This way, it allows exploration while speeding the learning in
inherently hard states for the Q-function. We can then query the demonstration provider only when
needed which makes it particularly suitable in the context of active learning. However, the mechanism
after the expert has been requested remains the same: the demonstrated transition is added to the
replay buffer, and therefore diluted with transitions taken by a sub-optimal Q-function. We see
here a trade-off: we would like to spend with care and thus relatively slowly our budget to leverage
demonstrations as much as possible, but waiting entails a larger dilution in the buffer. Therefore,
Bootstrapped DQN takes more than 100 iterations before reaching rewards in the hundreds for an
episode.

To address the scarcity of the demonstration provider information, two possible solutions could be
proposed. The first simple one is to sample demonstrated transitions more frequently in the replay
buffer. The second approach is the one we used, similar to reward shaping using an additional learner.
Using Kernel methods, we can make the most out of the small demonstration buffer. Using two
complementary models (the kernel-based one with small capacity but capable of learning quickly,
and the Deep Q Network with huge capacity but that has a slow learning curve) allows us to gain
over the initial Bootstrapped DQN [5]. However, unlike classical reward shaping, we do not have
guarantees of convergence. Empirically, adding this reward still improved over Bootstrapped DQN.

A solution in the same vein as ours would have been to design balls for a certain metric around the
states where we requested demonstrations, then propagate the information of those demonstrations to
other states. However, we argue that our solution actually resembles this hard-coded process while
enabling a softer decision model that is not based on an arbitrary metric of similarity but that learns
this latter through kernels.

6 Conclusion

This project was an opportunity for us to learn a lot about a recent research topic in RL. After
having studied several ideas from the literature and having implemented some baselines, we proposed
an algorithm to address the problem of actively learning from scarce and possibly sub-optimal
demonstrations. Our algorithm is the result of successive iterations and improvements. We chose
to restrict demonstrations to state-action pairs, that constitutes a weak and application-independent
hypothesis. In future work, some higher-level forms of demonstrations could be considered such as
pointing at symmetries or invariance in a specific problem that would reduce the complexity of the
learning task, although this signal might be harder to integrate in an active learning framework.

References
[1] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé. Reinforcement

learning from demonstration through shaping. In Twenty-fourth international joint conference
on artificial intelligence, 2015.

[2] T. Cederborg, I. Grover, C. L. Isbell Jr, and A. L. Thomaz. Policy shaping with human teachers.
In IJCAI, pages 3366–3372, 2015.

10

[3] C. Celemin, J. Ruiz-del Solar, and J. Kober. A fast hybrid reinforcement learning framework
with human corrective feedback. Autonomous Robots, 43(5):1173–1186, 2019.

[4] J. Chemali and A. Lazaric. Direct policy iteration with demonstrations. In IJCAI-24th Interna-
tional Joint Conference on Artificial Intelligence, 2015.

[5] S.-A. Chen, V. Tangkaratt, H.-T. Lin, and M. Sugiyama. Active deep q-learning with demon-
stration. Machine Learning, pages 1–27, 2019.

[6] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell. Reinforcement learning from imperfect
demonstrations. arXiv preprint arXiv:1802.05313, 2018.

[7] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[8] J. Ho and S. Ermon. Generative adversarial imitation learning. arXiv preprint arXiv:1606.03476,
2016.

[9] B. Kim, A.-m. Farahmand, J. Pineau, and D. Precup. Learning from limited demonstrations. In
Advances in Neural Information Processing Systems, pages 2859–2867, 2013.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[11] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped dqn.
arXiv preprint arXiv:1602.04621, 2016.

[12] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[14] K. Subramanian, C. L. Isbell Jr, and A. L. Thomaz. Exploration from demonstration for
interactive reinforcement learning. In Aamas, pages 447–456, 2016.

[15] Z. Wang and M. E. Taylor. Improving reinforcement learning with confidence-based demon-
strations. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, pages 3027–3033. International Joint Conferences on Artificial Intelligence Orga-
nization.

[16] Z. Wang and M. E. Taylor. Interactive reinforcement learning with dynamic reuse of prior
knowledge from human and agent demonstrations. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, pages 3820–3827. International Joint
Conferences on Artificial Intelligence Organization.

[17] E. Wiewiora, G. W. Cottrell, and C. Elkan. Principled methods for advising reinforcement
learning agents. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pages 792–799, 2003.

[18] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from large-scale
video datasets. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3530–3538. IEEE.

11

Appendices

0 20 40 60 80 100 120 140
Trajectories

10

20

30

40

50

60

70

80

90
Re

wa
rd

B-DQN with single head

Figure 6: Expected reward when training a Bootstrap DQN with a single head, using a greedy strategy.
The lines here correspond to the mean over 20 runs, and the shaded part to the variance.

12

	Introduction
	Existing approaches to learn from demonstrations
	Learning merely from demonstrations
	Combining demonstrations and RL signals
	Actively querying demonstrations

	Theoretical setting
	General context
	Jensen-Shannon divergence and uncertainty estimation on the learning agent
	Active queries based on uncertainty
	Building a model of the demonstration policy
	Active queries and reward shaping: our approach

	CliffWalk and CartPole settings
	Results and Discussion
	Exploiting expert demonstrations
	CliffWalk
	Cartpole

	Behaviour with sub-optimal demonstrations
	Training details
	Discussion

	Conclusion
	Appendices

